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Comptes Rendus (Doklady) de 1’Académie des Sciences de I’URSS
1937. Volume XIV, N 8

PHYSICS

COBERENT VISIBLE RADIATION OF FAST ELECTRONS PASSING
THROUGH MATTER

By I. FRANK and Ig. TAMM, Corresponding Member of the Academy

In 1934 P. A. Cerenkov has discovered a peculiar phenomenon, whicd
he has since investigated in detail (). All liquids and solids if bombard-
el by fast electrons, such as (3-electrons or Compton electrons produced
by y-rays, do emit a peculiar visible radiation, quite different from the
eventual ordinary flourescence. This radiation is partially polarized, the
electric oscillation vector being parallel to the electron beam, and its
intensity can be reduced neither by temperature nor by addition to the
liquid bombarded of quenching substances. The peculiarity of these carac-
teristics was scrutinized by Wawilow (2) who suggested that this radiation
must be connected with the «Bremsung» of fast electrons. Since then a
new and undoubtedly the most peculiar characteristic of the phenomenon
was discovered, namely, its highly pronounced asymmetry, the intensity
of light emitted in the direction of the motion of electrons being many
times larger than in the backward direction. It follows that the substance
bombarded radiates coherently for the space of at least one wave-
length of the visible light.

This peculiar radiation can evidently not be explained by any common
mechanism such as the interaction of the fast electron with individual
aom or as radiative scattering of electrons on atomic nuclei* On the
other hand, the phenomenon can be explained both qualitatively and
quantitatively if one takes in account the fact that an electron
moving in a medium does radiate light even if 1tis
moving uniformly provided that its velocity is grea-
ter than the velocity of light in the medium.

We shall consider an electron moving with constant velocity ¢ along
the 2 axis through a . medium characterized by its index of refrac-
lion n. The field of the electron may be considered as the result of
superposition of spherical waves of retarded potential, which are being
tontinually emitted by the moving electron and are propagated with the

velocity%. It is easy to see that all these consecutive waves emitted

—

T * The intensity of visible light emitted by the last named process is about 10°
Mes smaller than the intensity observed.
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direction making the angle 6 with theaxis

1 : se al the P
P d 9 do satisfy the condition

of motion z, if only ¢, n an

L i 1
.%.—_—_.—V.COSO; cosﬂ——:ﬁ- (1)

G — 2 . Thus, there will be a radiation emitted in the direction

where § =

whereas thg interference of waves will prevent radiation‘ in any other
direction. Now the condition (1) can be fulfilled only if Bn>1, 14 e
only in case of fast electrons in a medium, whose index of refraction n
for frequencies in question is markedly larger than 1. For instance, if
n=1.33 (water, A=5900 A) the energy of the electron must be not
smaller than 260 kV. But if Br_>1, then even an uniformly moving
electron does radiate light in the direction 0 *. )

We proceed to develop a more detailed theory. Since we are intersted
in visible radiation we can treat the medium macroscopically, applying
to it the usual equations of the electromagnetic theory of light. Using
the dinamical relation between the polarisation P and the electric
intensity E:

2P | N
3 T > 03P = o,
s

where o, are frequencies of the molecular oscillators of the mediun,
and expanding all the field variables in Fourier series:

oo “+oo
E= S E, ¢vtdo, P = S Pyeivtdo ete., 2

one easily obtains the connexion between P, and E,:
P, = (n*—1)E,, (3)
where n is the refraction index of the medium for the frequency o.

With the help of (2) and (3) one can easily reduce the Maxwells
equations to the following set of equations:

H"’ = rot ALO! Elo = —grad CP(D _—IICE)A-(L) = (_;;3 v dlv A'U_— i(::lAw’ (4)
2,2
ViAo + 2 A, =— T, 6)

where ‘we made use of the connection between the vector and scalar
potentials:

: 10
divA, + - n2 @, = 0.
If an electron e is movin i i
] ) g through the medium along the axis?
with a constant velocity ¢, the corresponding current density .}g is equal to
jx=Jy=0, j: = evd (x)3(y)d(z— vt),
where 3§ depotes the Dirac’s function.
Expanding j, one gets:
iwz

iz(0)=5e ° 3()3(y),

* X-rays ca i :
rays ngiy 0 never be radiated by an uniformly moving electron since for thes
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or, introducing cylindrical coordinates p,0,2
iwz

(@)= me " 3(p).
Introducing this expression in (5) and putting

iwz

A,=A,=0, A;(w)=u(p)-e °, (6)

we obtain ) s
*u 1 du e

£ —(;5;+s2u=—;‘;§8(9), (7
where \
0]

st =5 (Bn—1) =—q2. (8)

Thus u is a cylinder function satisfying the Bessel equation:

o2 19

ity 5 TSu=0, 9)

everywhere with the exception of the pole p = 0. To find the condition
to be satisfied by u at p =0 we first replace the right hand side of (7)

by f: )
f=——s if p<pe f=0 if p>opq

eps
integrate then this equation over the surface of the circle of radius g,
and lastly go over to the limit p,—0. In this way we obtain
lim o du e
p»OP_ap._—E” (10)

We have now to distinguish between two different cases. First con-
sider the case of small velocities such that Bn <1, s2<0 and 2=
=—s*>0, ¢ being thus a real quantity. In this case the solution of (9)
satisfiying (10) and vanishing at the infinity is

u = 3 H{P (iop), (11)

H® being the Hankel function of the first kind. '
If 5p» 1 one can use the asymptotic value of H{}) and obtain according
to (6) and (11):

=0 —-cp+im(t—3—)
e v

. 4
A== Y2 mop

Thus in case of small .velocities the field of the electron decreases

exponentially with p, so that there is no radiation at all.
If however the velocity of the electron is so large that within a cer-

tain frequency range Bn=—:_n(m) is greater than 1, then within this

range the parameter s [equation (8)] is real and the gene}'al solution of
the equations (7) and (9) represents in infinity a cylindrical wave. Re-
quiring' v in this case to represent an outgoing and not an ingoing wave,

‘VeHObtain the following solution of (9), satisfying the condition (10) as
well:

do, cpy 1.

w=—L HO(sp) if ©>0, (12)
2C [} \
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complex conjugate expression if <0, s being assumed to J,
B itive. Using the asymptotic value of H( for sp>> 1 one gets from (j

and (12):
. z 3 3
Ay (0) = — /5= (3 s |
With the help of (8) one can transform the exponent as follows: l
. 0+4psin@y. 3 _.
Az ((D) _ 717%‘8—? ew) (t_ Z¢0s —w——‘P )+’Z i ’ ((0 - 0) (13) |

where the angle 0 is defined by (1) and w = —nc— .
Thus, if fr > 1 a wave is propagated in infinity along the direction 0.
The electric vector of the wave lies in the meridian plane (z, ).
Calculating the field intensity in the wave zone with the help of ()
one gets

—

H,= -%Sl/gdm cos ¥,

___a | ]/B’nz——1
E: = Ve amve odo cos 7, (14)
n 1\ odo 5
Ez—;}—/;.5<1—@;>'175005/, J
where a = —2—[/-;% and X = m(t— ﬁ%‘L"G) + % ; all other compo-

nents of E and H vanish. In distinction to (2) the integration in (14) as
well as in all following integrals has to be extended only over posi-
tive values of o and has to be restricted to the frequency range de-
fined by Bn () =>1. \

The total energy W radiated by the electron through the surface of |
a cylinder of the length I (the axis of the cylinder coinciding with the
line of motion of the electron) is equal to

W= 21tpl+f°[% [EH] ac.

With the help of the formula:

-+
S cos (o + a) cos (o't + B) dt = 7d (0 — ')
we find
W= (odo(1— 1. (1) |
céfin"il) ( i > |

We obtain exactly the same result if we calculate the total energy
radiated by an electron,. which, being initially at rest, has moved Wwith
the velocity ¢ through the distance I/ and was than stopped again. In
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this case the validity of (15) is restricted by the condition that I should
be large in comparison ‘with the wave length A of the radiation emitted.

If the velocity of the electron is gradually decreasing, the equation (15)
will thus remain valid for such sections I of its path, along which its
velocity remains approximately constant, if only these sections are large
enough in comparison with A. Of course, in this case the angle 6 bet-
ween v and the direction of radiation will also gradually decrease.

In order to estimate the total loss of energy by radiation we can
substitute in (15) for n? its approximate value defined by the equations

A

wz ?
SH

A ’
n2(®)=1+m, nZ(O):e=1+
where ¢ is the dielectric constant and ®, some average molecular
frequency of the medium, and then integrate (15) from w=0 to
O = W,y.

In0 this way we obtain the following approximate expression for the

loss of energy by radiation per unit path of the fast electron (BN 1):
aw 202 e
o= ge E—DIn—. (16)
ST 5 e 1 4 :

Assuming w, =6 - 1015 sec.~1, one f1nds—al~to be of the order of
several kilovolts per centimeter, a quantity negligible in comparison to
the losses of energy by othér causes. .

When we have already finished our calculations, prof. A. Joffe kindly
drew our attention to a paper of Sommerfeld (¢) who had calculated the force
acting on an electron moving in vacuum with a constant velocity ¢ > c.
This force is also due to radiation losses of the kind considered, but
since the establishment of the theory of relativity we know that the
condition ¢ > ¢ can never be realized.

One easily deduces from the equation (15) that the number of photons
emitted by an electron within the spectral region confined by the wave
lengths A; and A, is equal to

l l 1
N=2ﬂd-<z—g><1—sg_mi>7 R (17)
o being the fine structure constant, a = ;:—, and n, the average value of

the refraction index in that region. Assuming n = 1.33, B2= -2— (electron

energy 500 kV) and 7 =0.1 ¢cm, we find that in the visible region bet-
ween A; =4 .10-5 cm and A, =6 - 10~5 cm about 10 photons are emitted
by one fast electron. This agrees in order of magnitude with the
experimental estimates (unpublished) of Cerenkov.

Cerenkov’s measurement confirmed also the direct proportionality
of the radiation intensity with the range ! of the electrons in different
mediums. The dependence of the intensity of radiation on the refraction
index n is also discussed by him in detail in an article of the present
fascicule; his conclusions are favourable to the theory.

If one takes in account, that Cerenkov’s measurements were mostly
made on widely diverging bundles of Gompton electrons, produced by
1Tays and characterized by a very broad velocity distribution, one can
safely say, that so far all the experimental evidence 01 the phenomenon

% Doklady 14
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in question, including the polarization and the spatial asymmetry of
the radiation as well as its absolute intensity, is in best possible agree.
ment with the theory here developed. i ‘

Physical lnstitufe of the Academy Received
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